Nitric oxide and effects of cationic polypeptides in canine cerebral arteries.
نویسندگان
چکیده
Cationic polypeptides are released by activated leukocytes and may play an important role in the regulation of vascular tone. Effects of cationic polypeptides on cerebral vascular tone have not been studied. The present experiments were designed to determine if synthetic cationic polypeptides, poly-L-arginine and poly-L-lysine, affect the function of cerebral arteries. Rings of canine basilar arteries with and without endothelium were suspended for isometric force recording. Poly-L-arginine (10(-8)-10(-7) M) and poly-L-lysine (10(-8)-10(-7).M) caused endothelium-dependent relaxations. A nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester (10(-4) M), and a nitric oxide scavenger, oxyhemoglobin (3 x 10(-6) M), inhibited relaxations in response to cationic polypeptides. Negatively charged molecules, heparin (1 U/ml) and dextran sulfate (10 mg/ml), also inhibited relaxations to poly-L-arginine or poly-L-lysine. Higher concentrations of poly-L-arginine (10(-6)-10(-5) M) and poly-L-lysine (10(-6)-10(-5) M) induced endothelium-independent contractions. A protein kinase C inhibitor, staurosporine (10(-8) M), abolished these contractions. Heparin (10 U/ml) and dextran sulfate (100 mg/ml) inhibited the contractile effect of cationic polypeptides but did not affect contractions to phorbol 12,13-dibutyrate. Poly-L-arginine (10(-6) M) and poly-L-lysine (10(-6) M) abolished endothelium-dependent relaxations in response to bradykinin (10(-10)-10(-6) M) or calcium ionophore A23187 (10(-9)-10(-6) M). Heparin (50 U/ml) and dextran sulfate (200 mg/ml) restored endothelium-dependent relaxations to bradykinin (10(-10)-10(-6) M) in arteries exposed to poly-L-arginine (10(-6) M) or poly-L-lysine (10(-6) M). These studies demonstrate that in the lower concentration range (10(-8)-10(-7) M), poly-L-arginine and poly-L-lysine induce endothelium-dependent relaxations by production of nitric oxide via charge-dependent activation of endothelial nitric oxide synthase. In the higher concentration range (10(-6)-10(-5) M), cationic polypeptides cause endothelium-independent contractions as well as impairment of endothelium-dependent relaxations in response to bradykinin and A23187. These contractions and inhibition of endothelium-dependent relaxations are also mediated by a charge-dependent mechanism and may involve activation of protein kinase C.
منابع مشابه
Expression and function of recombinant endothelial nitric oxide synthase gene in canine basilar artery after experimental subarachnoid hemorrhage.
BACKGROUND AND PURPOSE Gene transfer with recombinant viral vectors encoding vasodilator proteins may be useful in therapy of cerebral vasospasm after subarachnoid hemorrhage (SAH). Relaxations mediated by nitric oxide are impaired in cerebral arteries affected by SAH. The present study was designed to determine the effect of SAH on the efficiency of ex vivo adenovirus-mediated gene transfer to...
متن کاملEffect of carbon monoxide on rabbit cerebral arteries.
BACKGROUND AND PURPOSE Carbon monoxide produces relaxation in some peripheral arteries. Recently it has been suggested that carbon monoxide may be generated in brain tissue. In the present study we examined the hypothesis that carbon monoxide directly relaxes cerebral blood vessels. METHODS The aorta and basilar and middle cerebral arteries were removed from New Zealand White rabbits and moun...
متن کاملProtective vasomotor effects of in vivo recombinant endothelial nitric oxide synthase gene expression in a canine model of cerebral vasospasm.
BACKGROUND AND PURPOSE Post-subarachnoid hemorrhage (SAH) cerebral vasospasm is a potentially devastating condition whose pathogenesis involves impaired nitric oxide (NO) bioavailability. We aimed to determine whether recombinant endothelial NO synthase (eNOS) gene expression may protect vasomotor function and prevent vasospasm in a canine experimental SAH model. METHODS Recombinant adenovira...
متن کاملExpression and function of recombinant S1179D endothelial nitric oxide synthase in canine cerebral arteries.
BACKGROUND AND PURPOSE Bovine endothelial nitric oxide synthase (eNOS) is phosphorylated directly by the protein kinase Akt at serine 1179. Mutation of this residue to the negatively charged aspartate (S1179DeNOS) increases nitric oxide (NO) production constitutively in the absence of agonist stimulus. The present study was designed to determine the effect of mutant S1179DeNOS gene expression o...
متن کاملAdventitia-dependent relaxations of canine basilar arteries transduced with recombinant eNOS gene.
We recently reported that expression of recombinant endothelial nitric oxide (NO) synthase (eNOS) gene in adventitial fibroblasts restores NO formation in canine cerebral arteries without endothelium in response to bradykinin ex vivo and in vivo. The present study was designed to further characterize the stimuli that can activate recombinant eNOS enzyme expressed in the adventitia of cerebral a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 17 4 شماره
صفحات -
تاریخ انتشار 1997